IEEE Access (Jan 2022)
A Novel Gray Image Denoising Method Using Convolutional Neural Network
Abstract
In order to make the image denoising more effective in high noise level environment, we propose a gray image denoising method using convolutional neural network (ConvNet). By constructing symmetric and dilated convolutional residual network and combining leaky ReLU (Rectified Linear Unit) and ReLU dual-functions. Experimental data show that this method achieves better objective results based on small resolution input & large resolution input and small dataset & large dataset compared with other methods. A series of subjective visual comparison results also show that proposed method can perform image denoising well in high noise level environment, and there are no problems such as damaged edge or texture details, boundary artifacts and poor definition of the denoised image. The proposed method not only improves the image denoising ability, but also improves the denoising productivity to some extent. In the related work, we have made a comprehensive discussion on the current mainstream image denoising methods based on traditional machine learning and deep learning, which to some extent makes up for the lack of such reviews. In addition, the existing problems and future development direction of image denoising are discussed in detail.
Keywords