Biotechnologie, Agronomie, Société et Environnement (Jan 2016)
Agronomic assessment of spent substrates for mushroom cultivation
Abstract
Description of the subject. In this work the agronomic viability of substrates based on spent Agaricus bisporus Imbach (Lange) substrates (SAS) and spent Pleurotus ostreatus (Jacq.) P. Kumm. substrates (SPS) is studied. Objectives. The aim of this work is the qualitative agronomic evaluation of SPS and SAS and the mixture of thereof in different proportions, such as lignocellulosic sources in new growing cycles of P. ostreatus. Method. In addition to the commercial substrate used as a control reference, six different treatments are considered. In this experiment, SPS and SAS were mixed in different amounts. SAS was subjected to a heat treatment in a growing room ("cook out") and then to a maturation treatment which consisted of a controlled recomposting process in cameras. SPS was subjected to a pasteurizing heat treatment (60 °C – 65 °C, 8 h) and a progressive temperature decrease for at least 15 h to a "seeding" temperature (25 °C). Results. SPS (3,600 g) + SAS (2,400 g) and SPS (3,000 g) + SAS (3,000 g) were prepared substrates that achieved acceptable crude protein content in their fruiting bodies. Additionally, we obtained higher ash content, lightness, yellow-blue (y-b) and red-green (r-g) chromaticity, breaking strength (Bs), and compression energy (CE) in these mushrooms. These values were higher than the mean values, and even higher than the commercial substrate. Conclusions. Increased SAS participation in the mixture of the processed substrate (and the consequent reduction of SPS participation) resulted in mushrooms that require higher Bs, and CE. These formulation-based composts degraded by the growth of P. ostreatus, could be a low-cost substrate with selective and balanced nutrients for growth and development of oyster mushrooms.