Metals (Apr 2021)

Sorption Recovery of Platinum Metals from Production Solutions of Sulfate-Chloride Leaching of Chromite Wastes

  • Georgiy Petrov,
  • Irina Zotova,
  • Tatiana Nikitina,
  • Svetlana Fokina

DOI
https://doi.org/10.3390/met11040569
Journal volume & issue
Vol. 11, no. 4
p. 569

Abstract

Read online

This paper discusses the scientific rationale for methods of platinum metals sorption centralization from saturated solutions with a high content of macrocomponents. Methods of sorption centralization of platinum and iridium using local anionites such as AH-31, AB-17-8, Purolite S985 are described. The sorbents used were conditioned to remove organic and mineral impurities. The sorption isotherms of platinum group metals 1/EC=f(1/Cp) at a temperature of 20 °C and a duration of 24 h were plotted. The data on the sorption recovery of platinum and iridium from individual and combined sulfate-chloride solutions were determined. Isotherms of iridium sorption from sulfate-chloride solution are formed. Results of the apparent sorption equilibrium constant and values of standard Gibbs energy (ΔG, kJ/mol) of ion exchange for sorption of platinum and iridium from individual and combined sulfate-chloride solutions are presented. Linearized isotherms and kinetic curves of joint sorption of platinum and iridium from sulfate-chloride solution are described. Comparative sorption of the platinum-group metals (PGM) by anionites AB-17-8 and Purolite S985 from sulfate-chloride solutions is shown. The sorption diagram of platinum and iridium from sulfate-chloride product solutions is presented. It has been revealed that complete recovery is achieved using chelation ion-exchange resin Purolite S985, with recovery of Pt up to 95% and Ir more than 73%. The sorption process is accompanied by intradiffusion constraints that are confirmed by the analysis of kinetic curves using Schmukler and Boyd–Adams models.

Keywords