Pharmaceuticals (May 2021)
<sup>68</sup>Ga-Labeling: Laying the Foundation for an Anti-Radiolytic Formulation for NOTA-sdAb PET Tracers
Abstract
During the preparation of [68Ga]Ga-NOTA-sdAb at high activity, degradation of the tracers was observed, impacting the radiochemical purity (RCP). Increasing starting activities in radiolabelings is often paired with increased degradation of the tracer due to the formation of free radical species, a process known as radiolysis. Radical scavengers and antioxidants can act as radioprotectant due to their fast interaction with formed radicals and can therefore reduce the degree of radiolysis. This study aims to optimize a formulation to prevent radiolysis during the labeling of NOTA derivatized single domain antibody (sdAbs) with 68Ga. Gentisic acid, ascorbic acid, ethanol and polyvinylpyrrolidone were tested individually or in combination to find an optimal mix able to prevent radiolysis without adversely influencing the radiochemical purity (RCP) or the functionality of the tracer. RCP and degree of radiolysis were assessed via thin layer chromatography and size exclusion chromatography for up to three hours after radiolabeling. Individually, the radioprotectants showed insufficient efficacy in reducing radiolysis when using high activities of 68Ga, while being limited in amount due to negative impact on radiolabeling of the tracer. A combination of 20% ethanol (VEtOH/VBuffer%) and 5 mg ascorbic acid proved successful in preventing radiolysis during labeling with starting activities up to 1–1.2 GBq of 68Ga, and is able to keep the tracer stable for up to at least 3 h after labeling at room temperature. The prevention of radiolysis by the combination of ethanol and ascorbic acid potentially allows radiolabeling compatibility of NOTA-sdAbs with all currently available 68Ge/68Ga generators. Additionally, a design is proposed to allow the incorporation of the radioprotectant in an ongoing diagnostic kit development for 68Ga labeling of NOTA-sdAbs.
Keywords