Translational Psychiatry (Nov 2022)
Structural disconnection-based prediction of poststroke depression
Abstract
Abstract Poststroke depression (PSD) is a common complication of stroke. Brain network disruptions caused by stroke are potential biological determinants of PSD but their conclusive roles are unavailable. Our study aimed to identify the strategic structural disconnection (SDC) pattern for PSD at three months poststroke and assess the predictive value of SDC information. Our prospective cohort of 697 first-ever acute ischemic stroke patients were recruited from three hospitals in central China. Sociodemographic, clinical, psychological and neuroimaging data were collected at baseline and depression status was assessed at three months poststroke. Voxel-based disconnection-symptom mapping found that SDCs involving bilateral temporal white matter and posterior corpus callosum, as well as white matter next to bilateral prefrontal cortex and posterior parietal cortex, were associated with PSD. This PSD-specific SDC pattern was used to derive SDC scores for all participants. SDC score was an independent predictor of PSD after adjusting for all imaging and clinical-sociodemographic-psychological covariates (odds ratio, 1.25; 95% confidence interval, 1.07, 1.48; P = 0.006). Split-half replication showed the stability and generalizability of above results. When added to the clinical-sociodemographic-psychological prediction model, SDC score significantly improved the model performance and ranked the highest in terms of predictor importance. In conclusion, a strategic SDC pattern involving multiple lobes bilaterally is identified for PSD at 3 months poststroke. The SDC score is an independent predictor of PSD and may improve the predictive performance of the clinical-sociodemographic-psychological prediction model, providing new evidence for the brain-behavior mechanism and biopsychosocial theory of PSD.