Diabetology & Metabolic Syndrome (Aug 2024)

Investigating CR1 as an indicated Gene for mild cognitive impairment in type 2 diabetes mellitus

  • Xueling Zhou,
  • Shaohua Wang,
  • Dandan Yu,
  • Tong Niu

DOI
https://doi.org/10.1186/s13098-024-01449-y
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Objective Type 2 diabetes mellitus (T2DM) has beenis known as an important risk factor for cognitive impairment. Meanwhile, the liver plays a central role in the development of T2DM and insulin resistance. The present study attempted to identify and validate marker genes for mild cognitive impairment (MCI) in patients with T2DM. Methods In this study, insulin resistance-related differentially expressed genes were identified from the liver tissues of individuals with T2DM and those with normal glucose tolerance using the Gene Expression Omnibus database and MCI-associated genes were identified using the GeneCards database. Next, enrichment analysis was performed with overlapping T2DM and MCI genes, followed by the identification of specific genes using the LASSO logistic regression and SVM-RFE algorithms. An important experiment involved the implementation of clinical and in vitro validation using real-time quantitative polymerase chain reaction (RT-qPCR). Finally, multiple linear regression, binary logistic regression, and receiver operating characteristic curve analyses were performed to investigate the relationship between the key gene and cognitive function in these patients. Result The present study identified 40 overlapping genes between MCI and T2DM, with subsequent enrichment analysis revealing their significant association with the roles of neuronal and glial projections. The marker gene complement receptor 1(CR1) was identified for both diseases using two regression algorithms. Based on RT-qPCR validation in 65 T2DM patients with MCI (MCI group) and 65 T2DM patients without MCI (NC group), a significant upregulation of CR1 mRNA in peripheral blood mononuclear cells was observed in the MCI group (P < 0.001). Furthermore, the CR1 gene level was significantly negatively associated with MoCA and MMSE scores, which reflect the overall cognitive function, and positively correlated with TMTB scores, which indicate the executive function. Finally, elevated CR1 mRNA levels were identified as an independent risk factor for MCI (OR = 1.481, P < 0.001). Conclusion These findings suggest that CR1 is an important predictor of MCI in patients with T2DM. Thus, CR1 has potential clinical significance, which may offer new ideas and directions for the management and treatment of T2DM. The identification and clinical validation of dysregulated marker genes in both T2DM and MCI can offer valuable insights into the intrinsic association between these two conditions. The current study insights may inspire the development of novel strategies for addressing the complicated issues related to cognitive impairment associated with diabetes.

Keywords