Nature Communications (Mar 2020)

Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction

  • Saori Sakaue,
  • Jun Hirata,
  • Masahiro Kanai,
  • Ken Suzuki,
  • Masato Akiyama,
  • Chun Lai Too,
  • Thurayya Arayssi,
  • Mohammed Hammoudeh,
  • Samar Al Emadi,
  • Basel K. Masri,
  • Hussein Halabi,
  • Humeira Badsha,
  • Imad W. Uthman,
  • Richa Saxena,
  • Leonid Padyukov,
  • Makoto Hirata,
  • Koichi Matsuda,
  • Yoshinori Murakami,
  • Yoichiro Kamatani,
  • Yukinori Okada

DOI
https://doi.org/10.1038/s41467-020-15194-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Population structure, even subtle differences within seemingly homogenous populations, can have an impact on the accuracy of polygenic prediction. Here, Sakaue et al. use dimensionality reduction methods to reveal fine-scale structure in the Biobank Japan cohort and explore the performance of polygenic risk scores.