Diversity (Dec 2022)

Genetic Diversity of Two Globally Invasive Snails in Asia and Americas in Relation with Agricultural Habitats and Climate Factors

  • Benliang Zhao,
  • Mingzhu Luo,
  • Jiaen Zhang,
  • Yiliang Liu,
  • Zhixin Deng,
  • Xin Gong

DOI
https://doi.org/10.3390/d14121069
Journal volume & issue
Vol. 14, no. 12
p. 1069

Abstract

Read online

The successful establishment of invasive populations is closely linked to environmental factors. It is unclear whether coexisting species in the native area follow the same genetic pattern in the invaded continents under the local climate factors. Two coexisting morphologically similar snails (Pomacea canaliculata and P. maculata), native to tropical and sub-tropical South America, have become invasive species for agriculture production and wetland conservation across five continents over 40 years. We analyzed the correlation between the genetic diversity of the two snails and the climate factors or habitat changes. Based on the 962 sequences from the invaded continents and South America, the nucleotide diversity in the agricultural habitat was low for P. canaliculata, whereas it was high for P. maculata, compared with that in the non-agricultural habitat. The two snails showed a divided population structure among the five continents. The P. canaliculata population in the invaded continents has remained stable, whereas the P. maculata population expanded suddenly. Seven main haplotype networks and two ancestral haplotypes (Pc3, Pm1) were found in the P. canaliculata and P. maculata populations. The haplotypes of the two snails were related to local climate factors. The overall fixation index of P. canaliculata and P. maculata was 0.2657 and 0.3097 between the invaded continents and South America. The population expansion of the two snails fitted the isolation-by-distance model. We discovered nine new sequences from the sampling locations. Overall, the genetic diversity and genetic differentiation of the two invasive snails were closely related to geographic separation, agricultural habitat, and climate factors.

Keywords