Molecules (Oct 2024)
Design, Synthesis, and Antimicrobial Evaluation of New Thiopyrimidine–Benzenesulfonamide Compounds
Abstract
Bacterial infection poses a serious threat to human life due to the rapidly growing resistance of bacteria to antibacterial drugs, which is a significant public health issue. This study was focused on the design and synthesis of a new series of 25 analogues bearing a 5-cyano-6-oxo-4-substituted phenyl-1,6-dihydropyrimidine scaffold hybridized with different substituted benzenesulfonamides through the thioacetamide linker M1–25. The antimicrobial activity of the new molecules was studied against various Gram-positive, Gram-negative, and fungal strains. All the tested compounds showed promising broad-spectrum antimicrobial efficacy, especially against K. pneumoniae and P. aeruginosa. Furthermore, the most promising compounds, 6M, 19M, 20M, and 25M, were subjected to minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. In addition, the antivirulence activity of the compounds was also examined using multiple biofilm assays. The new compounds promisingly revealed the suppression of microbial biofilm formation in the examined K. pneumoniae and P. aeruginosa microbial isolates. Additionally, in silico ADMET studies were conducted to determine their oral bioavailability, drug-likeness characteristics, and human toxicity risks. It is suggested that new pyrimidine–benzenesulfonamide derivatives may serve as model compounds for the further optimization and development of new antimicrobial and antisepsis candidates.
Keywords