Advanced Materials Interfaces (Jan 2024)

Armor for Steel: Facile Synthesis of Hexagonal Boron Nitride Films on Various Substrates

  • Ivan Vlassiouk,
  • Sergei Smirnov,
  • Alexander Puretzky,
  • Olugbenga Olunloyo,
  • David B. Geohegan,
  • Ondrej Dyck,
  • Andrew R. Lupini,
  • Raymond R. Unocic,
  • Harry M. Meyer III,
  • Kai Xiao,
  • Dayrl Briggs,
  • Nickolay Lavrik,
  • Jong Keum,
  • Ercan Cakmak,
  • Sumner B. Harris,
  • Marti Checa,
  • Liam Collins,
  • John Lasseter,
  • Reece Emery,
  • John Rayle,
  • Philip D. Rack,
  • Yijing Stehle,
  • Pavan Chaturvedi,
  • Piran R. Kidambi,
  • Gong Gu,
  • Ilia Ivanov

DOI
https://doi.org/10.1002/admi.202300704
Journal volume & issue
Vol. 11, no. 1
pp. n/a – n/a

Abstract

Read online

Abstract While hexagonal boron nitride (hBN) has been widely used as a buffer or encapsulation layer for emerging electronic devices, interest in utilizing it for large‐area chemical barrier coating has somewhat faded. A chemical vapor deposition process is reported here for the conformal growth of hBN on large surfaces of various alloys and steels, regardless of their complex shapes. In contrast to the previously reported very limited protection by hBN against corrosion and oxidation, protection of steels against 10% HCl and oxidation resistance at 850 °C in air is demonstrated. Furthermore, an order of magnitude reduction in the friction coefficient of the hBN coated steels is shown. The growth mechanism is revealed in experiments on thin metal films, where the tunable growth of single‐crystal hBN with a selected number of layers is demonstrated. The key distinction of the process is the use of N2 gas, which gets activated exclusively on the catalyst's surface and eliminates adverse gas‐phase reactions. This rate‐limiting step allowed independent control of activated nitrogen along with boron coming from a solid source (like elemental boron). Using abundant and benign precursors, this approach can be readily adopted for large‐scale hBN synthesis in applications where cost, production volume, and process safety are essential.

Keywords