Horticulturae (Jul 2024)
NGS-Based Multi-Allelic InDel Genotyping and Fingerprinting Facilitate Genetic Discrimination in Grapevine (<i>Vitis vinifera</i> L.)
Abstract
Molecular markers play a crucial role in marker-assisted breeding and varietal identification. However, the application of insertion/deletion markers (InDels) in grapevines has been limited by the low throughput and separability of gel electrophoresis. To developed effective InDel markers for grapevines, this study reports a novel, effective and high-throughput pipeline for InDel marker development and identification. After rigorous filtering, 11 polymorphic multi-allelic InDel markers were selected. These markers were then used to perform genetic identification of 123 elite grape cultivars using agarose gel electrophoresis and next-generation sequencing (NGS). The polymorphism rate of the InDel markers identified by gels was 37.92%, while the NGS-based results demonstrated a higher polymorphism rate of 61.12%. Finally, the NGS-based fingerprints successfully distinguished 122 grape varieties (99.19%), surpassing the gels, which could distinguish 116 grape varieties (94.31%). Specifically, we constructed phylogenetic trees based on the genotyping results from both gels and NGS. The population structure revealed by the NGS-based markers displayed three primary clusters, consisting of the patterns of the evolutionary divergence and geographical origin of the grapevines. Our work provides an efficient workflow for multi-allelic InDel marker development and practical tools for the genetic discrimination of grape cultivars.
Keywords