Journal of Southern Hemisphere Earth Systems Science (Jan 2022)
Forecasting extreme marine heat events in key aquaculture regions around New Zealand
Abstract
The Tasman Sea has been identified as a climate hotspot and has experienced several marine heatwaves (MHWs) in recent years. These events have impacted coastal regions of New Zealand (NZ), which has had a follow-on effect on local marine and aquaculture industries. Advance warning of extreme marine heat events would enable these industries to mitigate potential losses. Here we present an assessment of the forecast skill of the Australian Bureau of Meteorology’s seasonal prediction system, Australian Community Climate and Earth-System Simulator-Seasonal v1.0 (ACCESS-S1), for three key aquaculture regions around NZ: Hauraki Gulf, Western Cook Strait and Foveaux Strait. We investigate the skill of monthly sea surface temperature anomaly (SSTA) forecasts, and forecasts for SSTA exceeding the 90th percentile, which is an accepted MHW threshold. We find that the model has skill for predicting extreme heat events in all three regions at 0–2 month lead times. We then demonstrate that ACCESS-S1 was able to capture observed monthly SSTA exceeding the 90th percentile around coastal NZ during the 2019 Tasman Sea MHW at a lead time of 1 month. Finally, we discuss the relationship between SSTA in the Tasman Sea and SSTA in coastal regions of NZ, and thus the Tasman Sea as a source of model SSTA skill in the three key coastal regions. Results from this study show that skilful forecasts of ocean heat extremes in regional areas have the potential to enable marine operators in the aquaclture industry to mitigate losses due to MHWs, especially in a warming climate.