Remote Sensing (Apr 2024)
Spatiotemporal Variation and Causes of Typical Extreme Precipitation Events in Shandong Province over the Last 50 Years
Abstract
In this study, based on hourly ERA5 reanalysis data from July to September, from 1971 to 2020, for Shandong Province, we used mathematical statistical analysis, the Mann–Kendall nonparametric statistical test, cluster analysis, and other methods to extract and analyze the spatiotemporal variation characteristics and causes of typical extreme precipitation events. The results indicated the following: (1) The total number and duration of precipitation events show a nonsignificant upward trend, while the average and extreme rainfall intensities show a nonsignificant downward trend. (2) Extreme precipitation events are primarily concentrated in Qingdao, Jinan, Heze, and Binzhou, with fewer events occurring in central Shandong Province. (3) Extreme precipitation events are classified into four types (namely, patterns I, II, III, and IV). Pattern I exhibits two rain peaks, with the primary rain peak occurring after the secondary rain peak. Similarly, pattern II also displays two rain peaks, with equivalent rainfall amounts for both peaks. In contrast, pattern III has multiple, evenly distributed rain peaks. Finally, pattern IV shows a rain peak during the first half of the precipitation event. Pattern I has the highest occurrence probability (46%), while pattern IV has the lowest (7%). (4) The spatial distributions of the different rain patterns are similar, with most being found in the eastern coastal and western regions. (5) Extreme precipitation events result from interactions between large-scale circulation configurations and mesoscale convective systems. The strong blocking situation and significant circulation transport at middle and low latitudes in East Asia, along with strong convergent uplift, abnormally high specific humidity, and high-water-vapor convergence centers, play crucial roles in supporting large-scale circulation systems and triggering mesoscale convective systems.
Keywords