Neurobiology of Disease (Mar 2011)

Efficiency of laryngeal motor nerve repair is greater with bulbar than with mucosal olfactory ensheathing cells

  • Alexandre Paviot,
  • Nicolas Guérout,
  • Nicolas Bon-Mardion,
  • Célia Duclos,
  • Laetitia Jean,
  • Olivier Boyer,
  • Jean-Paul Marie

Journal volume & issue
Vol. 41, no. 3
pp. 688 – 694

Abstract

Read online

The real ability of OECs provided by olfactory mucosa cultures (OM-OECs) and those from olfactory bulb cultures (OB-OECs) must be better characterized in order to propose their future clinical application.Therefore, we used a lesion of the vagus nerve (VN), which constitutes a severe motor denervation due to long distance of the muscular targets (4.5 cm). We performed a section/anastomosis surgery of the VN, at the third tracheal ring. Then, OM-OECs and OB-OECs were injected in matrigel around the lesion site.Three months after surgery, laryngeal muscle activity, synkinesis phenomena and latency were evaluated by videolaryngoscopy and electromyography recordings. To complete these procedures, axonal morphometric study of the right recurrent nerve was performed to assess axonal regrowth and tracking of green fluorescent protein positive cells was performed. Recurrent nerve is the motor branch innervating the laryngeal muscles, and is located distally to the lesion, near the muscular targets (0.7 cm). These analyses permitted to compare the ability of these two populations to improve functional recovery and axonal regrowth.Our results show that, OM-OECs improved electrical muscular activity and nervous conduction with significant tissue healing but induced aberrant movement and poor functional recovery. In contrast, OB-OECs induced a partial functional recovery associated with an increase in the number of myelinated fibers and nervous conduction.Our study suggests that, as recently reported in a microarray study, OM-OECs and OB-OECs express different properties. In particular, OM-OECs could regulate inflammation processes and extracellular matrix formation but have a poor regeneration potential, whereas, OB-OECs could improve functional recovery by inducing targeted axonal regrowth.

Keywords