Applied Sciences (Feb 2022)
Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills
Abstract
Brain activity stimulated by the motor imagery paradigm (MI) is measured by Electroencephalography (EEG), which has several advantages to be implemented with the widely used Brain–Computer Interfaces (BCIs) technology. However, the substantial inter/intra variability of recorded data significantly influences individual skills on the achieved performance. This study explores the ability to distinguish between MI tasks and the interpretability of the brain’s ability to produce elicited mental responses with improved accuracy. We develop a Deep and Wide Convolutional Neuronal Network fed by a set of topoplots extracted from the multichannel EEG data. Further, we perform a visualization technique based on gradient-based class activation maps (namely, GradCam++) at different intervals along the MI paradigm timeline to account for intra-subject variability in neural responses over time. We also cluster the dynamic spatial representation of the extracted maps across the subject set to come to a deeper understanding of MI-BCI coordination skills. According to the results obtained from the evaluated GigaScience Database of motor-evoked potentials, the developed approach enhances the physiological explanation of motor imagery in aspects such as neural synchronization between rhythms, brain lateralization, and the ability to predict the MI onset responses and their evolution during training sessions.
Keywords