iScience (May 2023)
Microbial biogeochemical cycling reveals the sustainability of the rice-crayfish co-culture model
Abstract
Summary: Aquaculture has great potential in nourishing the global growing population, while such staggering yields are coupled with environmental pollution. Rice-crayfish co-culture models (RCFP) have been widely adopted in China due to their eco-friendliness. However, little is known about RCFP’s microbiome pattern, which hinders our understanding of its sustainability. This study has conducted metagenomic analysis across aquaculture models and habitats, which revealed aquaculture model-specific biogeochemical cycling pattern (e.g., nitrogen (N), sulfur (S), and carbon (C)): RCFP is advantageous in N-assimilation, N-contamination, and S-pollutants removal, while non-RCFP features N denitrification process and higher S metabolism ability, producing several hazardous pollutants in non-RCFP (e.g., nitric oxide, nitrogen monoxide, and sulfide). Moreover, RCFP has greater capacity for carbohydrate enzyme metabolism compared with non-RCFP in environmental habitats, but not in crayfish gut. Collectively, RCFP plays an indispensable role in balancing aquaculture productivity and environmental protection, which might be applied to the blue transformation of aquaculture.