Communications Biology (Jul 2021)
A convolutional neural-network framework for modelling auditory sensory cells and synapses
Abstract
Drakopoulos et al developed a machine-learning and computational-neuroscience approach that transforms analytical models of sensory neurons and synapses into deep-neural-network (DNN) neuronal units with the same biophysical properties. Focusing on auditory neurons and synapses, they showed that their DNN-model architecture could be extended to a variety of existing analytical models and to other neuron and synapse types, thus potentially assisting the development of large-scale brain networks and DNN-based treatments.