BMC Genomics (Feb 2010)
Hyper-expansion of large DNA segments in the genome of kuruma shrimp, <it>Marsupenaeus japonicus</it>
Abstract
Abstract Background Higher crustaceans (class Malacostraca) represent the most species-rich and morphologically diverse group of non-insect arthropods and many of its members are commercially important. Although the crustacean DNA sequence information is growing exponentially, little is known about the genome organization of Malacostraca. Here, we constructed a bacterial artificial chromosome (BAC) library and performed BAC-end sequencing to provide genomic information for kuruma shrimp (Marsupenaeus japonicus), one of the most widely cultured species among crustaceans, and found the presence of a redundant sequence in the BAC library. We examined the BAC clone that includes the redundant sequence to further analyze its length, copy number and location in the kuruma shrimp genome. Results Mj024A04 BAC clone, which includes one redundant sequence, contained 27 putative genes and seemed to display a normal genomic DNA structure. Notably, of the putative genes, 3 genes encode homologous proteins to the inhibitor of apoptosis protein and 7 genes encode homologous proteins to white spot syndrome virus, a virulent pathogen known to affect crustaceans. Colony hybridization and PCR analysis of 381 BAC clones showed that almost half of the BAC clones maintain DNA segments whose sequences are homologous to the representative BAC clone Mj024A04. The Mj024A04 partial sequence was detected multiple times in the kuruma shrimp nuclear genome with a calculated copy number of at least 100. Microsatellites based BAC genotyping clearly showed that Mj024A04 homologous sequences were cloned from at least 48 different chromosomal loci. The absence of micro-syntenic relationships with the available genomic sequences of Daphnia and Drosophila suggests the uniqueness of these fragments in kuruma shrimp from current arthropod genome sequences. Conclusions Our results demonstrate that hyper-expansion of large DNA segments took place in the kuruma shrimp genome. Although we analyzed only a part of the duplicated DNA segments, our result suggested that it is difficult to analyze the shrimp genome following normal analytical methodology. Hence, it is necessary to avoid repetitive sequence (such as segmental duplications) when studying the other unique structures in the shrimp genome.