Remote Sensing (Jan 2022)
Simplified Method of Determination of the Sound Speed in Water on the Basis of Temperature Measurements and Salinity Prediction for Shallow Water Bathymetry
Abstract
The aim of this paper is to present a method of determining sound speed in water, based on temperature measurements executed by means of a laboratory low-cost thermometer with a probe provided with a long cable. It has been assumed that the salinity variation in respect to depth, found in a shallow water area, has insignificant impact on the sound velocity distribution determined by the temperature changes. The salinity data were obtained via the Internet service from the closest measuring station that registers surface water parameters. The sound speed in water was determined based on the formulas widely adopted in hydroacoustics and compared with the results obtained from the measurements executed by means of a Conductivity/Salinity Temperature Depth (CTD/STD) probe. The impact of inaccuracy in determining the sound speed in respect to the SingleBeam EchoSounder (SBES) immersion depth, i.e., a method commonly used by unmanned surface vessels in seaport measurements, was estimated. The measurements were taken in water areas of the Baltic Sea of low salinity and then verified with measurements in the Mediterranean Sea representing quite high salinity. The method is an alternative for calibrating the SBES the bar check way and has the capacity to meet the requirements in respect to its application in hydrographic surveys.
Keywords