BMC Genomics (Aug 2020)

Global transcriptomic responses orchestrate difenoconazole resistance in Penicillium spp. causing blue mold of stored apple fruit

  • Franz J. Lichtner,
  • Verneta L. Gaskins,
  • Kerik D. Cox,
  • Wayne M. Jurick

DOI
https://doi.org/10.1186/s12864-020-06987-z
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Blue mold is a globally important and economically impactful postharvest disease of apples caused by multiple Penicillium spp. There are currently four postharvest fungicides registered for blue mold control, and some isolates have developed resistance manifesting in decay on fungicide-treated fruit during storage. To date, mechanisms of fungicide resistance have not been explored in this fungus using a transcriptomic approach. Results We have conducted a comparative transcriptomic study by exposing naturally-occurring difenoconazole (DIF) resistant (G10) and sensitive (P11) blue mold isolates to technical grade difenoconazole, an azole fungicide in the commercial postharvest product Academy (Syngenta Crop Protection, LLC). Dynamic changes in gene expression patterns were observed encompassing candidates involved in active efflux and transcriptional regulators between the resistant and sensitive isolates. Unlike other systems, 3 isoforms of cytochrome P450 monoxygenase (CYP51A-C) were discovered and expressed in both sensitive and resistant strains upon difenoconazole treatment. Active efflux pumps were coordinately regulated in the resistant isolate and were shown to mediate the global resistance response as their inhibition reversed the difenoconazole-resistant phenotype in vitro. Conclusions Our data support the observation that global transcriptional changes modulate difenoconazole resistance in Penicillium spp. While the dogma of CYP51 overexpression is supported in the resistant isolate, our studies shed light on additional new mechanisms of difenoconazole resistance on a global scale in Penicillium spp. These new findings broaden our fundamental understanding of azole fungicide resistance in fungi, which has identified multiple genetic targets, that can be used for the detection, management, and abatement of difenoconazole-resistant blue mold isolates during long-term storage of apples.

Keywords