Diagnostics (Oct 2023)

Clinical Value of Mean Platelet Volume to Platelet Ratio (MPR) in Distinguishing Mass-Forming Chronic Pancreatitis and Pancreatic Cancer

  • Han-Xuan Wang,
  • Yu-Lin Li,
  • Jin-Can Huang,
  • You-Wei Ma,
  • Ren Lang,
  • Shao-Cheng Lyu

DOI
https://doi.org/10.3390/diagnostics13193126
Journal volume & issue
Vol. 13, no. 19
p. 3126

Abstract

Read online

Background: Correctly distinguishing mass-forming chronic pancreatitis (MFCP) from pancreatic cancer (PC) is of clinical significance to determine optimal therapy and improve the prognosis of patients. According to research, inflammation status in PC is different from that in MFCP. Mean platelet volume/platelet ratio (MPR) is a platelet-related inflammation index which has been proven to be valuable in the diagnosis and prognosis of various malignant cancers due to the change in mean platelet volume and platelet count under abnormal inflammatory conditions caused by tumors. Thus, we conducted this study to investigate the clinical value of MPR in distinguishing MFCP from PC. Methods: We retrospectively analyzed the data of 422 patients who were suspected to have PC during imaging examination at our department from January 2012 to December 2021. Included patients were divided into the PC (n = 383) and MFCP groups (n = 39), according to their pathological diagnosis. Clinical data including MPR were compared within these two groups and the diagnostic value was explored using logistic regression. The ROC curve between MPR and PC occurrence was drawn and an optimal cut-off value was obtained. Propensity score matching was applied to match MFCP patients with PC patients according to their age and carbohydrate antigen 19-9 (CA19-9). Differences in MPR between groups were compared to verify our findings. Results: The area under the ROC curve between MPR and PC occurrence was 0.728 (95%CI: 0.652–0.805) and the optimal cut-off value was 0.045 with a 69.2% sensitivity and 68.0% accuracy. For all the included patients, MPRs in the MFCP and PC groups were 0.04 (0.04, 0.06) and 0.06 (0.04, 0.07), respectively (p = 0.005). In patients with matching propensity scores, MPRs in the MFCP and PC groups were 0.04 (0.03, 0.06) and 0.06 (0.05, 0.08), respectively (p = 0.005). Multiple logistic regression in all included patients and matched patients confirmed MPR and CA19-9 as independent risk markers in distinguishing PC. Combining CA19-9 with MPR can increase the sensitivity and accuracy in diagnosing PC to 93.2% and 89.5%, respectively. Conclusion: MPR in PC patients is significantly higher than that in MFCP patients and may be adopted as a potential indicator to distinguish MFCP and PC. Its differential diagnosis capacity can be improved if combined with CA19-9.

Keywords