Nature Communications (Mar 2024)

Large-scale modular and uniformly thick origami-inspired adaptable and load-carrying structures

  • Yi Zhu,
  • Evgueni T. Filipov

DOI
https://doi.org/10.1038/s41467-024-46667-0
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Existing Civil Engineering structures have limited capability to adapt their configurations for new functions, non-stationary environments, or future reuse. Although origami principles provide capabilities of dense packaging and reconfiguration, existing origami systems have not achieved deployable metre-scale structures that can support large loads. Here, we established modular and uniformly thick origami-inspired structures that can deploy into metre-scale structures, adapt into different shapes, and carry remarkably large loads. This work first derives general conditions for degree-N origami vertices to be flat foldable, developable, and uniformly thick, and uses these conditions to create the proposed origami-inspired structures. We then show that these origami-inspired structures can utilize high modularity for rapid repair and adaptability of shapes and functions; can harness multi-path folding motions to reconfigure between storage and structural states; and can exploit uniform thickness to carry large loads. We believe concepts of modular and uniformly thick origami-inspired structures will challenge traditional practice in Civil Engineering by enabling large-scale, adaptable, deployable, and load-carrying structures, and offer broader applications in aerospace systems, space habitats, robotics, and more.