Modelling (Mar 2021)
Data Traffic Modeling in RPAS/UAV Networks with Different Architectures
Abstract
Deploying of Fifth Generation and Beyond Fifth Generation (5G/B5G) wireless networks will require wider coverage, flexible connectivity, low latency, support for a large number of user devices, and more bandwidth. This article explores the paradigm that Remotely Piloted Air Systems (RPASs) or Unmanned Aerial Vehicles (UAVs) are integrated as a communication platform with cellular networks using radio access. It is important to know the possibilities and ways of such integration for effective interaction with RPASs. This paper studies the issues of ensuring the required Quality of Service (QoS) during heavy traffic and the choice of necessary data transmission modes for this. Models of RPAS communication channels with different architectures were created. The relationships between models’ performance and traffic parameters were obtained using the NetCracker Professional 4.1 software. The dependencies of the Average Utilization (AU) on the Transaction Size (TS) were analyzed. The effects of different bandwidths and the Bit Error Rate (BER) were studied. The traffic characteristics in all models were compared.
Keywords