BMC Microbiology (Sep 2024)
Biocontrol Potential of Bacillus strains against soybean cyst nematode (Heterodera glycines) and for promotion of soybean growth
Abstract
Abstract The soybean cyst nematode (SCN, Heterodera glycines) is the most yield-limiting pathogen in soybeans worldwide. Using chemical pesticides to control this disease is harmful to human and environment. It is urgent to develop environment-friendly nematicides. The aim of this study was to discover novel biocontrol agents on H. glycines control and soybean growth under greenhouse and field conditions Eight Bacillus strains were isolated from soil rhizosphere soils and the stability and efficiency of H. glycines was assessed in greenhouse and field experiments in 2021 and 2022. In particular, the Ba2-6 strain had the highest potential, because it was a biocontrol agent against H. glycines shown to cause 93.85% juvenile mortality. Furthermore, strains Ba 1–7, Ba2-4, and Ba2-6 effectively reduced the number of females and improved the soybean seed number per plant. Based on their morphological, physiological, biochemical and molecular (16 S rRNA) characteristics, the three strains were identified as B. aryabhattai (Ba1-7), B. megatherium (Ba2-4), and B. halotolerans (Ba2-6). The ability of Ba2-6 to induce systemic resistance to H. glycines in soybeans was investigated by the split-root system and real-time quantitative PCR experiments. The results indicated that the Ba2-6 strain induced systemic resistance to suppress the penetration of H. glycines, and enhanced gene expression of PR1, PR3a, PR5, and NPR1-2, involved in the salicylic acid and jasmonic acid pathways. The study suggests that the strains of B. aryabhattai Ba1-7, B. megatherium Ba2-4, and B. halotolerans Ba2-6 can be considered as effective biocontrol agents to control H. glycines. Further, B. halotolerans Ba2-6 not only promotes soybean growth but also enhances resistance to H. glycines by regulating defense-related gene expression and inducing systemic resistance in soybean.
Keywords