World Journal of Emergency Surgery (Dec 2019)

New considerations on pathways involved in acute traumatic coagulopathy: the thrombin generation paradox

  • Cedric Gangloff,
  • Fanny Mingant,
  • Michael Theron,
  • Hubert Galinat,
  • Ollivier Grimault,
  • Yves Ozier,
  • Karine Pichavant-Rafini

DOI
https://doi.org/10.1186/s13017-019-0276-8
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background An acute traumatic coagulopathy (ATC) is observed in about one third of severely traumatized patients. This early, specific, and endogenous disorder is triggered by the association of trauma and hemorrhage. The early phase of this condition is characterized by the expression of a bleeding phenotype leading to hemorrhagic shock and the late phase by a prothrombotic profile leading to multiple organ failure. The physiopathology of this phenomenon is still poorly understood. Hypotheses of disseminated intravascular coagulation, activated protein C-mediated fibrinolysis, fibrinogen consumption, and platelet functional impairment were developed by previous authors and continue to be debated. The objective of this study was to observe general hemostasis disorders in case of ATC to confront these hypotheses. Method Four groups of 15 rats were compared: C, control; T, trauma; H, hemorrhage; and TH, trauma and hemorrhage. Blood samples were drawn at baseline and 90 min. Thrombin generation tests, platelet aggregometry, and standard hemostasis tests were performed. Results Significant differences were observed between the baseline and TH groups for aPTT (17.9 ± 0.8 s vs 24.3 ± 1.4 s, p < 0.001, mean ± SEM), MAP (79.7 ± 1.3 mmHg vs 43.8 ± 1.3 mmHg, p < 0.001, mean ± SEM), and hemoglobin (16.5 ± 0.1 g/dL vs 14.1 ± 0.3 g/dL, p < 0.001, mean ± SEM), indicating the presence of an hemorrhagic shock due to ATC. Compared to all other groups, coagulation factor activities were decreased in the TH group, but endogenous thrombin potential was (paradoxically) higher than in group C (312 ± 17 nM/min vs. 228 ± 23 nM/min; p = 0.016; mean ± SEM). We also observed a subtle decrease in platelet count and function in case of ATC and retrieved an inversed linear relationship between fibrinogen concentration and aPTT (intercept, 26.53 ± 3.16; coefficient, − 3.40 ± 1.26; adjusted R 2: 0.1878; p = 0.0123). Conclusions The clinical-biological profile that we observed, combining normal thrombin generation, fibrinogen depletion, and a hemorrhagic phenotype, reinforced the hypothesis of activated protein C mediated-fibrinolysis. The key role of fibrinogen, but not of the platelets, was confirmed in this study. The paradoxical preservation of thrombin generation suggests a protective mechanism mediated by rhabdomyolysis in case of major trauma. Based on these results, we propose a new conception concerning the pathophysiology of ATC.

Keywords