Scientific Reports (Jul 2018)

Histone deacetylase 8 protects human proximal tubular epithelial cells from hypoxia-mimetic cobalt- and hypoxia/reoxygenation-induced mitochondrial fission and cytotoxicity

  • Soon-Duck Ha,
  • Ori Solomon,
  • Masoud Akbari,
  • Alp Sener,
  • Sung Ouk Kim

DOI
https://doi.org/10.1038/s41598-018-29463-x
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Cell death by hypoxia followed by reoxygenation (H/R) is responsible for tissue injury in multiple pathological conditions. Recent studies found that epigenetic reprogramming mediated by histone deacetylases (HDACs) is implicated in H/R-induced cell death. However, among 18 different isoforms comprising 4 classes (I-IV), the role of each HDAC in cell death is largely unknown. This study examined the role of HDAC8, which is the most distinct isoform of class I, in the hypoxia mimetic cobalt- and H/R-induced cytotoxicity of human proximal tubular HK-2 cells. Using the HDAC8-specific activator TM-2-51 (TM) and inhibitor PCI34051, we found that HDAC8 played a protective role in cytotoxicity. TM or overexpression of wild-type HDAC8, but not a deacetylase-defective HDAC8 mutant, prevented mitochondrial fission, loss of mitochondrial transmembrane potential and release of cytochrome C into the cytoplasm. TM suppressed expression of dynamin-related protein 1 (DRP1) which is a key factor required for mitochondrial fission. Suppression of DRP1 by HDAC8 was likely mediated by decreasing the level of acetylated histone H3 lysine 27 (a hallmark of active promoters) at the DRP1 promoter. Collectively, this study shows that HDAC8 inhibits cytotoxicity induced by cobalt and H/R, in part, through suppressing DRP1 expression and mitochondrial fission.