Journal of Lipid Research (Jan 1997)
Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells.
Abstract
Docosahexaenoic acid (22:6n-3), an n-3 essential fatty acid derived from elongation and desaturation of linolenic acid (18:3n-3), is found in abundant proportion in the brain and the retina. It is generally assumed that the liver is the major source of 22:6n-3 for these organs, although some retinal and cerebral cells, such as retinal pigment epithelium (Wang and Anderson, 1993. Biochemistry. 32:13703-13709) and brain astrocytes (Moore et al. 1991. J. Neurochem. 56:518-524) have the ability to produce 22:6n-3. The aim of the present study was to determine whether retinal and cerebral microvascular endothelium could synthesize 22:6n-3. After incubation of both cultured bovine retinal and rat cerebral endothelial cells with [3-14C] 22:5n-3 in presence of serum, radioactivity was primarily recovered in 20:5n-3, indicating active retroconversion reactions in both tissues. However, 22:6n-3, 24:5n-3, and 24:6n-3 were also labeled. All of these metabolites were released in the medium as free fatty acids. Retinal endothelial cells preferentially released labeled 24-carbon metabolites, whereas cerebral endothelial cells released relatively more 20:5n-3 and 22:6n-3. With heat-inactivated serum or no serum, both endothelial cell preparations showed relatively higher retroconversion levels. However, in serum-deprived cells, the elongation/desaturation pattern was affected in retinal cells only, with an accumulation of 24:5n-3 relative to a decrease of 24:6n-3 and 22:6n-3. Fatty acid composition analyses revealed a decrease in long-chain polyunsaturated n-6 and n-3 fatty acids in retinal cells maintained in inactivated serum compared to normal serum, while no change was found in cerebral cells. Taken together, these results suggest that 1) the synthesis of 22:6n-3 by both retinal and cerebral endothelial cells is independent of a delta4-desaturase; 2) retinal and cerebral endothelia could be a source of 22:6n-3 for the retina and the brain, respectively; and 3) retinal endothelial delta6-desaturase, which converts 24:5n-3 to 24:6n-3, could be stimulated by serum components.