Respiratory Research (Mar 2019)
Down-regulation of microRNA-144-3p and its clinical value in non-small cell lung cancer: a comprehensive analysis based on microarray, miRNA-sequencing, and quantitative real-time PCR data
Abstract
Abstract Background Previous studies have shown that miR-144-3p might be a potential biomarker in non-small cell lung cancer (NSCLC). Nevertheless, the comprehensive mechanism behind the effects of miR-144-3p on the origin, differentiation, and apoptosis of NSCLC, as well as the relationship between miR-144-3p and clinical parameters, has been rarely reported. Methods We investigated the correlations between miR-144-3p expression and clinical characteristics through data collected from Gene Expression Omnibus (GEO) microarrays, the relevant literature, The Cancer Genome Atlas (TCGA), and real-time quantitative real-time PCR (RT-qPCR) analyses to determine the clinical role of miR-144-3p in NSCLC. Furthermore, we investigated the biological function of miR-144-3p by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Protein-protein interaction (PPI) network was created to identify the hub genes. Results From the comprehensive meta-analysis, the combined SMD of miR-144-3p was − 0.95 with 95% CI of (− 1.37, − 0.52), indicating that less miR-144-3p was expressed in the NSCLC tissue than in the normal tissue. MiR-144-3p expression was significantly correlated with stage, lymph node metastasis and vascular invasion (all P < 0.05). As for the bioinformatics analyses, a total of 37 genes were chosen as the potential targets of miR-144-3p in NSCLC. These promising target genes were highly enriched in various key pathways such as the protein digestion and absorption and the thyroid hormone signaling pathways. Additionally, PPI revealed five genes—C12orf5, CEP55, E2F8, STIL, and TOP2A—as hub genes with the threshold value of 6. Conclusions The current study validated that miR-144-3p was lowly expressed in NSCLC. More importantly, miR-144-3p might function as a latent tumor biomarker in the prognosis prediction for NSCLC. The results of bioinformatics analyses may present a new method for investigating the pathogenesis of NSCLC.
Keywords