Journal of Marine Science and Engineering (Nov 2024)

Typhoon Storm Surge Simulation Study Based on Reconstructed ERA5 Wind Fields—A Case Study of Typhoon “Muifa”, the 12th Typhoon of 2022

  • Xu Zhang,
  • Changsheng Zuo,
  • Zhizu Wang,
  • Chengchen Tao,
  • Yaoyao Han,
  • Juncheng Zuo

DOI
https://doi.org/10.3390/jmse12112099
Journal volume & issue
Vol. 12, no. 11
p. 2099

Abstract

Read online

A storm surge, classified as an extreme natural disaster, refers to unusual sea level fluctuations induced by severe atmospheric disturbances such as typhoons. Existing reanalysis data, such as ERA5, significantly underestimates the location and maximum wind speed of typhoons. Therefore, this study initially assesses the accuracy of tropical cyclone positions and peak wind speeds in the ERA5 reanalysis dataset. These results are compared against tropical cyclone parameters from the IBTrACS (International Best Track Archive for Climate Stewardship). The position deviation of tropical cyclones in ERA5 is mainly within the range of 10 to 60 km. While the correlation of maximum wind speed is significant, there is still considerable underestimation. A wind field reconstruction model, incorporating tropical cyclone characteristics and a distance correction factor, was employed. This model considers the effects of the surrounding environment during the movement of the tropical cyclone by introducing a decay coefficient. The reconstructed wind field significantly improved the representation of the typhoon eyewall and high-wind-speed regions, showing a closer match with wind speeds observed by the HY-2B scatterometer. Through simulations using the FVCOM (Finite Volume Community Ocean Model) storm surge model, the reconstructed wind field demonstrated higher accuracy in reproducing water level changes at Tanxu, Gaoqiao, and Zhangjiabang stations. During the typhoon’s landfall in Shanghai, the area with the greatest water level increase was primarily located in the coastal waters of Pudong New Area, Shanghai, where the highest total water level reached 5.2 m and the storm surge reached 4 m. The methods and results of this study provide robust technical support and a valuable reference for further storm surge forecasting, marine disaster risk assessment, and coastal disaster prevention and mitigation efforts.

Keywords