Applied Sciences (Oct 2021)
Analysis of Energy Performance and Integrated Optimization of Tubular Houses in Southern China Using Computational Simulation
Abstract
Chinese rural construction is currently booming, but faces considerable challenges in terms of energy performance. The objective of this research was to analyze the energy performance of tubular houses, which are a unique type of rural house in southern China, with a particular architectural form and environmental adaptations. Previous field measurements showed that there was much room for improvement, with both winter and summer cases requiring particular attention. Numerical simulations of the annual energy consumption were conducted using Open-Studio. The results show that various levels of reduction in energy consumption (varying from 1.6% to 30.5%) were achieved by combining different renovations. Among them, using solar energy with a sunroom was found to be the most effective approach, with an energy-saving rate of 28%, followed by the approach of attaching insulation to the walls and roof, with an energy-saving rate ranging from 13.2% to 30.5%. The integrated optimization measures had an energy-saving rate of 47.4% with a total renovation cost of CNY 41,143.1, and the payback period of investment was within five years. If a tubular house with improved thermal insulation can be inherited as a component in the process of urbanization, it will aid in energy conservation and natural ecosystem protection for southern China.
Keywords