Uludağ University Journal of The Faculty of Engineering (Dec 2021)

A Sequential Minimal Optimization Algorithm with Second-Order like Information to solve a Non-Smooth Support Vector Regression Constrained Dual Problem

  • Aykut Kocaoğlu

DOI
https://doi.org/10.17482/uumfd.974353
Journal volume & issue
Vol. 26, no. 3
pp. 1111 – 1120

Abstract

Read online

ε-duyarsız Destek Vektör Regresyonu (ε-DVR), ε-duyarsızlık özelliğine sahip düzenlenmiş 𝑙1 hata kayıp fonksiyonu ile ifade edilir ve 𝑙1 kayıp fonksiyonunun sahip olduğu gürbüz olma özelliği yanında küçük hatalara karşı duyarsız olma özelliğine de sahiptir. Ayrıca, düzenlenmiş hata ile çözümün düzlüğü üzerinde kontrol sağlanır. Bu çalışmada, ε-DVR ikincil problemi, klasik pürüzsüz DVR ikincil probleminin yarısı kadar eniyileme değişkenine sahip olma avantajıyla eşitlik ve eşitsizlik kısıtları altında düzgün olmayan dışbükey parçalı ikinci dereceden problem olarak türetilmiştir. Türetilen bu dışbükey düzgün olmayan ikincil eniyileme problemi, ardışık kayıp fonksiyonu değerleri arasındaki farka ilişkin bir üst sınırın en aza indirilmesine dayanan bir çalışma kümesi seçimi (ÇKS) kullanan verimli bir Ardışık Asgari Eniyileme (AAE) algoritması ile çözülmüştür. Daha önce düzgün olmayan ikincil ε-DVR probleminin AAE algoritması ile çözümünde ÇKS için Karush-KuhnTucker (KKT) koşullarını en fazla ihlal eden çiftler alınarak birinci dereceden bilgiler kullanılmıştır. Önerilen ÇKS’de ise ikinci dereceden benzer bilgiler kullanılmaktadır ve bu düzgün olmayan eniyileme problemini çözmek için birinci dereceden emsaline göre üstünlüğü bir dizi gerçek dünya veri kümesi üzerinde elde edilen sonuçlarla gösterilmiştir. Ayrıca, sonuçlar klasik pürüzsüz DVR ile de karşılaştırılmıştır

Keywords