Polymers (Dec 2018)

Mixed Membranes Comprising Carboxymethyl Cellulose (as Capping Agent and Gas Barrier Matrix) and Nanoporous ZIF-L Nanosheets for Gas Separation Applications

  • Fang Zhang,
  • Jing Dou,
  • Hui Zhang

DOI
https://doi.org/10.3390/polym10121340
Journal volume & issue
Vol. 10, no. 12
p. 1340

Abstract

Read online

Two-dimensional metal⁻organic framework (MOF) nanosheets with molecular sieving properties and unique dimensional advantages are highly desired as polymer fillers for gas separation applications. Regarding polymer-supported MOF membranes, it is crucial to enhance the adhesion between the polymeric substrate and the MOF component and avoid MOF particle agglomeration. In this study, hydrophobic, embedded nanoporous nanosheets of a 2D zeolitic imidazolate framework synthesized using zinc salt and 2-methylimidazole (Hmim) aqueous solution (ZIF-L) were incorporated into a carboxymethyl cellulose (CMC) solution to form a steady mixed aqueous suspension through one-step solution blending. This prepared the composite membranes with a fine dispersion of ZIF-L nanosheets (up to loadings of 52.88 vol %) and good adhesion within the highly dense structural CMC matrix due to the strong interactions between ZIF-L and CMC, as confirmed by FTIR, Zeta potential, XPS, and SEM analysis. The potential advantages of CMC over classic polymer matrices used for gas separation mainly include: (a) Good interaction, (b) high dispersion of ZIF-L nanosheets, (c) the gas barrier nature of the CMC membrane, and (d) a facile water-based synthetic process. Based on the molecular sieving effect of ZIF-L and the gas barrier nature of the CMC matrix, gas permeation tests (H2, CO2, N2, CH4) of the mixed membrane showed a great improvement in gas selectivities compared with the CMC membrane and the reported pure ZIF membranes.

Keywords