Frontiers in Earth Science (Oct 2024)
Do gravity data justify a rifted “Liguro-Provençal Basin”?
Abstract
The geodynamic evolution of the Liguro-Provençal Basin and its crust and upper mantle structure remain debated, especially regarding the role of rifting in continental break-up and seafloor spreading. Our study incorporates updated datasets, including new gravity maps from the AlpArray Gravity Working Group (complete Bouguer, free air, and isostatic anomalies) for 3D modeling and gravity field analysis, seismic data from Lobster offshore campaigns for direct comparison, and geodynamic models, supplemented by seismic profiles from previous French and Italian campaigns to constrain the interpretation. We used GFZ’s IGMAS + software for interactive 3D modeling, creating a density model extending to 300 km depth that includes crustal and upper mantle inhomogeneities based on prior geodynamic models. This hybrid approach, with polygonal structures for the crust and voxels for the upper mantle, clarifies individual contributions to the gravity field. Extending initial gravity modeling from the SPP MB4D project INTEGRATE, our work provides a consistent 3D density model for the Alps and Ligurian Basin. The constrained 3D modeling and numerical analyses (terracing, clustering, filtering, curvature), along with vertical stress and gravitational potential energy calculations, suggest that rifting has significantly influenced the basin’s geological evolution.
Keywords