Mathematical Biosciences and Engineering (Mar 2020)

Optimization of multi-angle Magneto-Acousto-Electrical Tomography (MAET) based on a numerical method

  • Tong Sun,
  • Xin Zeng ,
  • Penghui Hao,
  • Chien Ting Chin,
  • Mian Chen,
  • Jiejie Yan,
  • Ming Dai ,
  • Haoming Lin ,
  • Siping Chen,
  • Xin Chen

DOI
https://doi.org/10.3934/mbe.2020161
Journal volume & issue
Vol. 17, no. 4
pp. 2864 – 2880

Abstract

Read online

Magneto-Acousto-Electrical Tomography (MAET) is a novel multi-physics imaging method, which promises to offer a unique biophysical property of tissue electrical impedance with the additional benefit of excellent spatial resolution of the ultrasonic imaging. It opens the potential for early diagnosis of cancer by revealing changes of dielectric characteristics. However, direct MAET is unable to image the irregularly-shaped lesions fully due to the dependence on the angle between conductivity boundary and ultrasound beam direction. In this paper, a numerical simulation of multi-angle MAET is presented for an improved image reconstruction for MAET in order to discern irregularly-shaped tumors in different positions. The results show that the conductivity boundary interfaces are invisible in single angle B-mode reconstructed image, wherever the ultrasound beam and conductivity boundary are nearly parallel. When the multi-angle scanning was adopted, the image reconstructed with image rotation method reproduced the original object pattern. Furthermore, the relationship between reconstruction error and the number of angles was also discussed. It is found that 12 angles would be necessary to achieve nearly the optimal reconstruction. Finally, reconstructed images in L2 norm of the error with the measurement noise are presented.

Keywords