Scientific Reports (Jun 2024)
Effects of acute aerobic exercise on resting state functional connectivity of motor cortex in college students
Abstract
Abstract This study intends to inspect the effects of acute aerobic exercise (AE) on resting state functional connectivity (RSFC) in motor cortex of college students and the moderating effect of fitness level. Methods: 20 high fitness level college students and 20 ordinary college students were recruited in public. Subjects completed 25 min of moderate- and high-intensity acute aerobic exercise respectively by a bicycle ergometer, and the motor cortex’s blood oxygen signals in resting state were monitored by functional Near Infrared Spectroscopy (fNIRS, the Shimadzu portable Light NIRS, Japan) in pre- and post-test. Results: At the moderate intensity level, the total mean value of RSFC pre- and post-test was significantly different in the high fitness level group (pre-test 0.62 ± 0.18, post-test 0.51 ± 0.17, t (19) = 2.61, p = 0.02, d = 0.58), but no significant change was found in the low fitness level group. At the high-intensity level, there was no significant difference in the difference of total RSFC between pre- and post-test in the high and low fitness group. According to and change trend of 190 “edges”: at the moderate-intensity level, the number of difference edges in the high fitness group (d = 0.58, 23) were significantly higher than those in the low fitness group (d = 0.32, 15), while at high-intensity level, there was a reverse trend between the high fitness group (d = 0.25, 18) and the low fitness group (d = 0.39, 23). Conclusions: moderate-intensity AE can cause significant changes of RSFC in the motor cortex of college students with high fitness, while high fitness has a moderating effect on the relationship between exercise intensity and RSFC. RSFC of people with high fitness is more likely to be affected by AE and show a wider range of changes.
Keywords