Energies (May 2024)
Phase Distribution of Gas–Liquid Slug–Annular Flow in Horizontal Parallel Micro-Channels
Abstract
As a transitional flow pattern, slug–annular flow occurs over a wide range of operating conditions in micro-channels while its distribution in parallel micro-channels has not been well characterized. Herein, we conducted an experiment to study the phase distribution of slug–annular flow in parallel micro-channels. The test section consists of a header with a diameter of 0.48 mm and six branch channels with a diameter of 0.40 mm. Nitrogen and 0.03 wt% sodium dodecyl sulfate (SDS) solution were used as the test fluids. It was found that the phase distribution of the slug–annular flow was unstable and the duration of the varying process showed regularity with different inlet conditions. Increasing the liquid superficial velocity facilitated the liquid phase to flow into channels at the fore part of the header, while the channels at the rear part of the header were more supplied with liquid as the gas superficial velocity, volume fraction of gas, and volume flow rate increased. Furthermore, the results indicated that the channels located at the rear part of the header experienced a pronounced enhancement in the supply of both the liquid and gas phases, with the spacing between the branches increasing. A predictive correlation was formulated to ascertain the distribution of the liquid phase within slug–annular flow across parallel micro-channels.
Keywords