Pharmaceuticals (Oct 2021)

Investigation of the Mechanisms of Cytotoxic Activity of 1,3-Disubstituted Thiourea Derivatives

  • Paulina Strzyga-Łach,
  • Alicja Chrzanowska,
  • Katarzyna Podsadni,
  • Anna Bielenica

DOI
https://doi.org/10.3390/ph14111097
Journal volume & issue
Vol. 14, no. 11
p. 1097

Abstract

Read online

Substituted thiourea derivatives possess confirmed cytotoxic activity towards cancer but also normal cells. To develop new selective antitumor agents, a series of 3-(trifluoromethyl)phenylthiourea analogs were synthesized, and their cytotoxicity was evaluated in vitro against the cell line panel. Compounds 1–5, 8, and 9 were highly cytotoxic against human colon (SW480, SW620) and prostate (PC3) cancer cells, and leukemia K-562 cell lines (IC50 ≤ 10 µM), with favorable selectivity over normal HaCaT cells. The derivatives exerted better growth inhibitory profiles towards selected tumor cells than the reference cisplatin. Compounds incorporating 3,4-dichloro- (2) and 4-CF3-phenyl (8) substituents displayed the highest activity (IC50 from 1.5 to 8.9 µM). The mechanisms of cytotoxic action of the most effective thioureas 1–3, 8, and 9 were studied, including the trypan blue exclusion test of cell viability, interleukin-6, and apoptosis assessments. Compounds reduced all cancerous cell numbers (especially SW480 and SW620) by 20–93%. Derivatives 2 and 8 diminished the viability of SW620 cells by 45–58%. Thioureas 1, 2, and 8 exerted strong pro-apoptotic activity. Compound 2 induced late apoptosis in both colon cancer cell lines (95–99%) and in K-562 cells (73%). All derivatives acted as inhibitors of IL-6 levels in both SW480 and SW620 cells, decreasing its secretion by 23–63%.

Keywords