Pamukkale University Journal of Engineering Sciences (Oct 2018)

Genelleştirilmiş regresyon yapay sinir ağı örüntü katman büyüklüğünü azaltmak için kümeleme tabanlı bir yaklaşım

  • Buse Melis Özyıldırım,
  • Serkan Kartal,
  • Mustafa Oral

Journal volume & issue
Vol. 24, no. 5
pp. 857 – 863

Abstract

Read online

Genelleştirilmiş Regresyon Yapay Sinir Ağı (GRYSA) radyal tabanlı çalışan ve genellikle tahminleyici olarak kullanılan denetimli-öğrenimli bir yapay sinir ağı (YSA) modelidir. Kolay modellenebilmesinin yanında hızlı ve tutarlı sonuçlar üretmesi bu algoritmanın güçlü yanlarını oluşturmaktadır. Ancak GRYSA tahmin mekanizmasında, eğitim veri setindeki her örnek veri için örüntü katmanında bir adet nöron tutulmaktadır. Bu nedenle, eğitim veri setinin çok büyük olduğu çalışmalarda örüntü katman yapısı örnek verilerinin sayısıyla aynı oranda büyümekte, yapılan işlem sayısı ve bellek gereksinimi artmaktadır. Bu çalışmada, GRYSA algoritmasının işlem sayısını azaltmaya yönelik olarak literatürde daha önce de denenmiş olan k-ortalama kümeleme algoritması ön-işlemci olarak kullanılmış, literatürdeki çalışmalardan farklı olarak, bu çalışmaların performansını negatif anlamda etkileyen kümeler arasına düşen test verileri bulunarak aykırı veri oluşmasının önüne geçilmiştir. Böylece, örüntü katmanındaki bellek ihtiyacı ve işlem sayısı azaltılırken, kümeleme algoritmasının eklenmesi ile performansta ortaya çıkan negatif etki büyük oranda giderilmiş ve yaklaşık %90 daha az eğitim verisi ile neredeyse aynı tahmin sonuçları elde edilmiştir.

Keywords