Journal of Robotics (Jan 2017)

Networked Multimodal Sensor Control of Powered 2-DOF Wrist and Hand

  • Masaki Shibuya,
  • Kengo Ohnishi,
  • Isamu Kajitani

DOI
https://doi.org/10.1155/2017/7862178
Journal volume & issue
Vol. 2017

Abstract

Read online

A prosthetic limb control system to operate powered 2-DOF wrist and 1-DOF hand with environmental information, myoelectric signal, and forearm posture signal is composed and evaluated. Our concept model on fusing biosignal and environmental information for easier manipulation with upper limb prosthesis is assembled utilizing networking software and prosthetic component interlink platform. The target is to enhance the controllability of the powered wrist’s orientation by processing the information to derive the joint movement in a physiologically appropriate manner. We applied a manipulative skill model of prehension which is constrained by forearm properties, grasping object properties, and task. The myoelectric and forearm posture sensor signals were combined with the work plane posture and the operation mode for grasping object properties. To verify the reduction of the operational load with the proposed method, we conducted 2 performance tests: system performance test to identify the powered 2-DOF wrist’s tracking performance and user operation tests. From the system performance experiment, the fusion control was confirmed to be sufficient to control the wrist joint with respect to the work plane posture. Forearm posture angle ranges were reduced when the prosthesis was operated companying environmental information in the user operation tests.