Weather and Climate Extremes (Sep 2024)
A new conceptual model for understanding and predicting life-threatening rainfall extremes
Abstract
The motivation of our study is to provide forecasters and users complementary guidance and tools to identify and predict atmospheric conditions that could lead to life-threatening flash floods. Using hourly and sub-hourly rainfall datasets, proximity radiosondes, ERA5 reanalysis of extreme rainfall events in the UK during 2000–2020, and case studies in 2021, we observe a three-layered atmospheric structure, consisting of Moist Absolute Unstable Layers (MAULs) embedded in a conditional unstable layer sandwiched between a stable upper layer and a near-stable low layer. Based on our analysis, we propose a conceptual model to describe the atmospheric properties of a ‘rainfall extreme’ environment, with a particular focus on the thermodynamics associated with sub-hourly rainfall production processes. We then set this model within a wider framework to describe the precursor synoptic and mesoscale environments necessary for sub-hourly rainfall extremes in the mid-latitudes. We show that evolution of the Omega block and Rex Vortex couplet provides the optimal environmental conditions for sub-hourly rainfall extremes. These results provide the potential to develop a ‘4-stage’ warning system to assist in the identification and forecasting of life threatening short-duration extreme rainfall intensities and flash floods.