International Journal of Concrete Structures and Materials (Apr 2024)

Comparative Analysis of Gradient-Boosting Ensembles for Estimation of Compressive Strength of Quaternary Blend Concrete

  • Ismail B. Mustapha,
  • Muyideen Abdulkareem,
  • Taha M. Jassam,
  • Ali H. AlAteah,
  • Khaled A. Alawi Al-Sodani,
  • Mohammed M. H. Al-Tholaia,
  • Hatem Nabus,
  • Sophia C. Alih,
  • Zainab Abdulkareem,
  • Abideen Ganiyu

DOI
https://doi.org/10.1186/s40069-023-00653-w
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 24

Abstract

Read online

Abstract Concrete compressive strength is usually determined 28 days after casting via crushing of samples. However, the design strength may not be achieved after this time-consuming and tedious process. While the use of machine learning (ML) and other computational intelligence methods have become increasingly common in recent years, findings from pertinent literatures show that the gradient-boosting ensemble models mostly outperform comparative methods while also allowing interpretable model. Contrary to comparison with other model types that has dominated existing studies, this study centres on a comprehensive comparative analysis of the performance of four widely used gradient-boosting ensemble implementations [namely, gradient-boosting regressor, light gradient-boosting model (LightGBM), extreme gradient boosting (XGBoost), and CatBoost] for estimation of the compressive strength of quaternary blend concrete. Given components of cement, Blast Furnace Slag (GGBS), Fly Ash, water, superplasticizer, coarse aggregate, and fine aggregate in addition to the age of each concrete mixture as input features, the performance of each model based on R 2, RMSE, MAPE and MAE across varying training–test ratios generally show a decreasing trend in model performance as test partition increases. Overall, the test results showed that CatBoost outperformed the other models with R 2, RMSE, MAE and MAPE values of 0.9838, 2.0709, 1.5966 and 0.0629, respectively, with further statistical analysis showing the significance of these results. Although the age of each concrete mixture was found to be the most important input feature for all four boosting models, sensitivity analysis of each model shows that the compressive strength of the mixtures does increase significantly after 100 days. Finally, a comparison of the performance with results from different ML-based methods in pertinent literature further shows the superiority of CatBoost over reported the methods.

Keywords