Water (Jan 2024)

Experimental Investigation of the Evolution Process of Suspended Pipelines through River Bottoms under Unsteady Flow Conditions

  • Changjing Fu,
  • Yangming Xu,
  • Tianlong Zhao

DOI
https://doi.org/10.3390/w16020336
Journal volume & issue
Vol. 16, no. 2
p. 336

Abstract

Read online

One of the major geological hazards that can cause harm to long-distance oil and gas pipelines are water-induced disasters. These disasters are quite common and widespread. Pipelines that cross river channels are at a higher risk of facing damage due to flood-induced erosion. To shed light on the evolution pattern of riverbeds adjacent to pipelines under the influence of unsteady flow conditions, a flume model test was conducted, and the underlying mechanisms of local scour were elucidated. The experimental results demonstrate that pipelines are more susceptible to suspension during flood conditions. The suspension process of pipelines under flood conditions could be broadly divided into five stages. In comparison to constant flow conditions, the evolution process of local scour and the suspension of pipelines under unsteady flow lacked the erosion pit expansion stage, and the scour duration was shorter. Each stage exhibited distinct erosion characteristics, and both the peak flow rate and the number of flood peaks significantly impacted the maximum range and depth of the erosion pit. During pipeline-laying projects, selecting a covering layer with a larger particle size can enhance the erosion resistance of the riverbed around the pipeline. The study of the local erosion process of underwater crossing pipelines under unstable flow conditions can provide a reference for pipeline engineering design and riverbed pipeline protection strategies.

Keywords