Journal of Mechatronics, Electrical Power, and Vehicular Technology (Jul 2023)

Failure assessment in lithium-ion battery packs in electric vehicles using the failure modes and effects analysis (FMEA) approach

  • Rizky Cahya Kirana,
  • Nicco Avinta Purwanto,
  • Nadana Ayzah Azis,
  • Endra Joelianto,
  • Sigit Puji Santosa,
  • Bentang Arief Budiman,
  • Le Hoa Nguyen,
  • Arjon Turnip

DOI
https://doi.org/10.14203/j.mev.2023.v14.94-104
Journal volume & issue
Vol. 14, no. 1
pp. 94 – 104

Abstract

Read online

The use of batteries in electric cars comes with inherent risks. As the crucial component of these vehicles, batteries must possess a highly dependable safety system to ensure the safety of users. To establish such a reliable safety system, a comprehensive analysis of potential battery failures is carried out. This research examines various failure modes and their effects, investigates the causes behind them, and quantifies the associated risks. The failure modes and effect analysis (FMEA) method is employed to classify these failures based on priority numbers. By studying 28 accident reports involving electric vehicles, data is collected to identify potential failure modes and evaluate their risks. The results obtained from the FMEA assessment are used to propose safety measures, considering the importance of the potential failure modes as indicated by their risk priority number (RPN). The design incorporates safeguards against mechanical stress, external short circuits, and thermal runaway incidents. The findings of this study enhance our understanding of electric vehicle (EV) battery safety and offer valuable insights to EV manufacturers, regulators, and policymakers, aiding them in the development of safer and more reliable electric vehicles.

Keywords