Crystals (Mar 2023)

Magnetic Field-Dependent Microstructure Evolution of Solidified Co<sub>39.2</sub>Ni<sub>39.2</sub>Al<sub>21.6</sub> Eutectic Medium-Entropy Alloy

  • Haoxiang Liu,
  • Fan Bu,
  • Yuhao Wu,
  • Chenxu Xing,
  • Xudong Liu,
  • Yixuan He

DOI
https://doi.org/10.3390/cryst13040573
Journal volume & issue
Vol. 13, no. 4
p. 573

Abstract

Read online

A (Fe, Cr)-free Co39.2Ni39.2Al21.6 eutectic medium-entropy alloy (EMEA) was designed and fabricated to study the microstructure and its evolution during slow solidification under different intensities of high static magnetic field (0 T, 5 T and 10 T). It was found that the original microstructure was characterized by FCC/BCC mixed herringbone eutectics consisting of two types of lamellar structures: a curved and wormy anomalous eutectic in the fringe, and a straight and long regular eutectic in the center. Nano-sized L10-type martensite layers are also distributed on the BCC lamellar as the martensitic transformation product. The FCC and BCC phases were enriched in Co and Al elements, respectively, while Ni element was distributed homogenously in both phases. With increasing magnetic field intensity, the herringbone eutectic structures remained stable, without the formation of a primary phase, while the phase constitution and the orientation relationships in the eutectic structures remained unchanged, with no obvious magnetically induced alignments. However, the lamellar spacing of the regular lamellar eutectic decreased significantly from 3.3 μm (0 T) to 1.93 μm (10 T); by contrast, the volume fraction of the anomalous eutectics increased considerably from 28.35% (0 T) to 55.14% (10 T), and the assumption that the imposed convection and destabilization of lamellar eutectics is controlled by the magnetic field is discussed in depth. Our results show a great potential for tailoring microstructures and properties by applying a strong magnetic field during the solidification process of EMEAs.

Keywords