Entropy (Jan 2024)

Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers

  • Micaela Suriano,
  • Leonidas Facundo Caram,
  • Osvaldo Anibal Rosso

DOI
https://doi.org/10.3390/e26010056
Journal volume & issue
Vol. 26, no. 1
p. 56

Abstract

Read online

This paper analyzes the temporal evolution of streamflow for different rivers in Argentina based on information quantifiers such as statistical complexity and permutation entropy. The main objective is to identify key details of the dynamics of the analyzed time series to differentiate the degrees of randomness and chaos. The permutation entropy is used with the probability distribution of ordinal patterns and the Jensen–Shannon divergence to calculate the disequilibrium and the statistical complexity. Daily streamflow series at different river stations were analyzed to classify the different hydrological systems. The complexity-entropy causality plane (CECP) and the representation of the Shannon entropy and Fisher information measure (FIM) show that the daily discharge series could be approximately represented with Gaussian noise, but the variances highlight the difficulty of modeling a series of natural phenomena. An analysis of stations downstream from the Yacyretá dam shows that the operation affects the randomness of the daily discharge series at hydrometric stations near the dam. When the station is further downstream, however, this effect is attenuated. Furthermore, the size of the basin plays a relevant role in modulating the process. Large catchments have smaller values for entropy, and the signal is less noisy due to integration over larger time scales. In contrast, small and mountainous basins present a rapid response that influences the behavior of daily discharge while presenting a higher entropy and lower complexity. The results obtained in the present study characterize the behavior of the daily discharge series in Argentine rivers and provide key information for hydrological modeling.

Keywords