Karpatsʹkì Matematičnì Publìkacìï (Jun 2023)
Characteristics of linear and nonlinear approximation of isotropic classes of periodic multivariate functions
Abstract
Exact order estimates for some characteristics of linear and nonlinear approximation of the isotropic Nikol'skii-Besov classes $\mathbf{B}^r_{p,\theta}$ of periodic multivariate functions in the spaces $B_{q,1}$, $1\leq q \leq \infty$, are obtained. Among them are the best orthogonal trigonometric approximations, best $m$-term trigonometric approximations, Kolmogorov, linear and trigonometric widths. For all considered characteristics, their estimates coincide in order with the corresponding estimates in the spaces $L_{q}$. Moreover, the obtained exact in order estimates (except the case $1<p<2\leq q < \frac{p}{p-1}$) are realized by the approximation of functions from the classes ${\mathbf{B}}^r_{p,\theta}$ by trigonometric polynomials with the spectrum in cubic regions. In any case, they do not depend on the smoothness parameter $\theta$.
Keywords