Arthroplasty (Mar 2024)
Early radiological outcomes of a fully porous bridging collar in lower-limb endoprosthetic reconstructions: a case-matched retrospective series to assess osseointegration
Abstract
Abstract Background Limb-salvage surgery involving the utilization of endoprosthetic replacements is commonly employed following segmental bone resection for primary and secondary bone tumors. This study aimed to evaluate whether a fully porous bridging collar promotes early osseous integration in endoprosthetic replacements. Methods We undertook a retrospective review of all lower-limb endoprostheses utilizing a fully porous endosteal bridging collar design. We matched this cohort with a conventional extra-osteal non-porous fully hydroxyapatite-coated grooved collar cohort according to surgical indication, implant type, resection length, age, and follow-up time. At 6, 12, and 24 months post-implantation, radiographs were assessed for the number of cortices with or without osseointegration on orthogonal radiographs. Each radiograph was scored on a scale of -4 to + 4 for the number of cortices bridging the ongrowth between the bone and the collar of the prosthesis. Implant survival was estimated using the Kaplan–Meier method, and the mean number of osseointegrated cortices at each time point between the collar designs was compared using a paired t-test. Results Ninety patients were retrospectively identified and analyzed. After exclusion, 40 patients with porous bridging collars matched with 40 patients with conventional extra-osteal non-porous collars were included in the study (n = 80). The mean age was 63.4 years (range 16–91 years); there were 37 males and 43 females. The groups showed no difference in implant survival (P = 0.54). The mean number of cortices with radiographic ongrowth for the porous bridging collar and non-porous collar groups was 2.1 and 0.3, respectively, at 6-month (P < 0.0001), 2.4 and 0.5, respectively, at 12-month (P = 0.044), and 3.2 and -0.2, respectively, at 24-month (P = 0.18) radiological follow-up. Conclusion These findings indicate that fully porous bridging collars increased the number of cortices, with evidence of bone ongrowth between 6 and 24 months post-implantation. By contrast, extra-osteal collars exhibited reduced evidence of ongrowth between 6 and 24 months post-implantation. In the medium term, the use of a fully porous bridging collar may translate to a reduced incidence of aseptic loosening. Graphical Abstract
Keywords