The Astrophysical Journal (Jan 2023)
The Star Formation History of the Milky Way’s Nuclear Star Cluster
Abstract
We report the first star formation history study of the Milky Ways nuclear star cluster (NSC), which includes observational constraints from a large sample of stellar metallicity measurements. These metallicity measurements were obtained from recent surveys from Gemini and the Very Large Telescope of 770 late-type stars within the central 1.5 pc. These metallicity measurements, along with photometry and spectroscopically derived temperatures, are forward modeled with a Bayesian inference approach. Including metallicity measurements improves the overall fit quality, as the low-temperature red giants that were previously difficult to constrain are now accounted for, and the best fit favors a two-component model. The dominant component contains 93% ± 3% of the mass, is metal-rich ( $\overline{[{\rm{M}}/{\rm{H}}]}\sim 0.45$ ), and has an age of ${5}_{-2}^{+3}$ Gyr, which is ∼3 Gyr younger than earlier studies with fixed (solar) metallicity; this younger age challenges coevolutionary models in which the NSC and supermassive black holes formed simultaneously at early times. The minor population component has low metallicity ( $\overline{[{\rm{M}}/{\rm{H}}]}\sim -1.1$ ) and contains ∼7% of the stellar mass. The age of the minor component is uncertain (0.1–5 Gyr old). Using the estimated parameters, we infer the following NSC stellar remnant population (with ∼18% uncertainty): 1.5 × 10 ^5 neutron stars, 2.5 × 10 ^5 stellar-mass black holes (BHs), and 2.2 × 10 ^4 BH–BH binaries. These predictions result in 2–4 times fewer neutron stars compared to earlier predictions that assume solar metallicity, introducing a possible new path to understand the so-called “missing-pulsar problem”. Finally, we present updated predictions for the BH–BH merger rates (0.01–3 Gpc ^−3 yr ^−1 ).
Keywords