PLoS ONE (Jan 2022)

A callosal biomarker of behavioral intervention outcomes for autism spectrum disorder? A case-control feasibility study with diffusion tensor imaging.

  • Javier Virues-Ortega,
  • Nicole S McKay,
  • Jessica C McCormack,
  • Nerea Lopez,
  • Rosalie Liu,
  • Ian Kirk

DOI
https://doi.org/10.1371/journal.pone.0262563
Journal volume & issue
Vol. 17, no. 2
p. e0262563

Abstract

Read online

Tentative results from feasibility analyses are critical for planning future randomized control trials (RCTs) in the emerging field of neural biomarkers of behavioral interventions. The current feasibility study used MRI-derived diffusion imaging data to investigate whether it would be possible to identify neural biomarkers of a behavioral intervention among people diagnosed with autism spectrum disorder (ASD). The corpus callosum has been linked to cognitive processing and callosal abnormalities have been previously found in people diagnosed with ASD. We used a case-control design to evaluate the association between the type of intervention people diagnosed with ASD had previously received and their current white matter integrity in the corpus callosum. Twenty-six children and adolescents with ASD, with and without a history of parent-managed behavioral intervention, underwent an MRI scan with a diffusion data acquisition sequence. We conducted tract-based spatial statistics and a region of interest analysis. The fractional anisotropy values (believed to indicate white matter integrity) in the posterior corpus callosum was significantly different across cases (exposed to parent-managed behavioral intervention) and controls (not exposed to parent-managed behavioral intervention). The effect was modulated by the intensity of the behavioral intervention according to a dose-response relationship. The current feasibility case-control study provides the basis for estimating the statistical power required for future RCTs in this field. In addition, the study demonstrated the effectiveness of purposely-developed motion control protocols and helped to identify regions of interest candidates. Potential clinical applications of diffusion tensor imaging in the evaluation of treatment outcomes in ASD are discussed.