PLoS ONE (Jan 2019)

Amnestic mild cognitive impairment in Parkinson's disease: White matter structural changes and mechanisms.

  • Fuyong Chen,
  • Tao Wu,
  • Yuejia Luo,
  • Zhihao Li,
  • Qing Guan,
  • Xianghong Meng,
  • Wei Tao,
  • Haobo Zhang

DOI
https://doi.org/10.1371/journal.pone.0226175
Journal volume & issue
Vol. 14, no. 12
p. e0226175

Abstract

Read online

Mild cognitive impairment (MCI) is a heterogeneous cognitive disorder that is often comorbid with Parkinson's diseases (PD). The amnestic subtype of PD-MCI (PD-aMCI) has a higher risk to develop dementia. However, there is a lack of studies on the white matter (WM) structural changes of PD-aMCI. We characterized the WM structural changes of PD-aMCI (n = 17) with cognitively normal PD (PD-CN, n = 19) and normal controls (n = 20), using voxel-based and tract-based spatial statistics (TBSS) analyses on fractional anisotropy (FA) axial diffusivity (AD), and radial diffusivity (RD). By excluding and then including the motor performance as a covariate in the comparison analysis between PD-aMCI and PD-CN, we attempted to discern the influences of two neuropathological mechanisms on the WM structural changes of PD-aMCI. The correlation analyses between memory and voxel-based WM measures in all PD patients were also performed (n = 36). The results showed that PD-aMCI had smaller FA values than PD-CN in the diffuse WM areas, and PD-CN had higher AD and RD values than normal controls in the right caudate. Most FA difference between PD-aMCI and PD-CN could be weakened by the motor adjustment. The FA differences between PD-aMCI and PD-CN were largely spatially overlapped with the memory-correlated FA values. Our findings demonstrated that the WM structural differences between PD-aMCI and PD-CN were mainly memory-related, and the influence of motor adjustment might indicate a common mechanism underlying both motor and memory impairment in PD-aMCI, possibly reflecting a predominant influence of dopaminergic neuropathology.